A novel SOD1-ALS mutation separates central and peripheral effects of mutant SOD1 toxicity
نویسندگان
چکیده
Transgenic mouse models expressing mutant superoxide dismutase 1 (SOD1) have been critical in furthering our understanding of amyotrophic lateral sclerosis (ALS). However, such models generally overexpress the mutant protein, which may give rise to phenotypes not directly relevant to the disorder. Here, we have analysed a novel mouse model that has a point mutation in the endogenous mouse Sod1 gene; this mutation is identical to a pathological change in human familial ALS (fALS) which results in a D83G change in SOD1 protein. Homozgous Sod1(D83G/D83G) mice develop progressive degeneration of lower (LMN) and upper motor neurons, likely due to the same unknown toxic gain of function as occurs in human fALS cases, but intriguingly LMN cell death appears to stop in early adulthood and the mice do not become paralyzed. The D83 residue coordinates zinc binding, and the D83G mutation results in loss of dismutase activity and SOD1 protein instability. As a result, Sod1(D83G/D83G) mice also phenocopy the distal axonopathy and hepatocellular carcinoma found in Sod1 null mice (Sod1(-/-)). These unique mice allow us to further our understanding of ALS by separating the central motor neuron body degeneration and the peripheral effects from a fALS mutation expressed at endogenous levels.
منابع مشابه
Heat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملAn Iranian familial amyotrophic lateral sclerosis pedigree with p.Val48Phe causing mutation in SOD1: a genetic and clinical report
Objective(s): Amyotrophic lateral sclerosis (ALS), a fatal progressive neurodegenerative disorder, is the most common motor neuron disease in European populations. Approximately 10% of ALS cases are familial (FALS) and the other patients are considered as sporadic ALS (SALS). Among many ALS causing genes that have been identified, mutations in SOD1 and C9orf72 are the most common genetic causes...
متن کاملTargeting of monomer/misfolded SOD1 as a therapeutic strategy for amyotrophic lateral sclerosis.
There is increasing evidence that toxicity of mutant superoxide dismutase-1 (SOD1) in amyotrophic lateral sclerosis (ALS) is linked to its propensity to misfold and to aggregate. Immunotargeting of differently folded states of SOD1 has provided therapeutic benefit in mutant SOD1 transgenic mice. The specific region(s) of the SOD1 protein to which these immunization approaches target are, howeve...
متن کاملOxidative Modifications of Cu, Zn-Superoxide Dismutase (SOD1) – The Relevance to Amyotrophic Lateral Sclerosis (ALS)
Amyotrophic lateral sclerosis (ALS) is a fatal degenerative disease of motor neurons. About 10 % of ALS cases are affected in a familial trait, a subset of which is caused by the mutation of Cu, Zn-superoxide dismutase (SOD1) gene (Rosen et al., 1993). Since the identification of the gene for familial ALS, research emphasis for ALS has been placed on uncovering the pathogenic mechanism of motor...
متن کامل